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The dynamic characteristics of an electromagnetically driven trigger regulator with one 

pulse per period is considered for a model with one and a half degrees of freedom. The 

method of point transformations is used to find the decomposition of the parameter space 
into domains in each of which the system under investigation has the same qualitative 

structure of the decomposition of the phase space into trajectories. The parameter value 
ranges in which complex periodic motions occur in the system are established, 

1, The dynamfc model and equatfone of motfon. The motionof 
electromechanical trigger regulators with electromagnetic drive fl and 21 can be inves- 

@a I 4 
tigated with the aid of the following model. 

F?a I ’ Oscillator 1 of soft-magnetic material (Fig. 1) 

9 
oscillates under the action of the linear restoring 
force exerted by spring 2 and the pulses pro- 

,*f duced by interaction of the oscillator with pulse 
L I’ coil 3. As the oscillator moves from left to right, 

Fig. 1 
pin 4 makes contact with leaf spring 5 near 

the position of static equilibrium, bends it, and 
closes the electrical circuit through contact 6. During interaction of the magnetic field 
of pulse coil 3 with oscillator I (which is close to the coil at this instant), the latter 

received a mechanical impulse. As the oscillator continues to move forward (from left 
to right) leaf spring 5 slips out from under pin 4, the circuit is broken, and the pulse 
ceases. The electrical circuit is not closed during the reverse motion of the oscillator. 

We shall make the following simpli~ing assumptions. 
1, There is no sparking‘when the electrical circuit is broken, and the circuit resistance, 

which is finite with the circuit cfosed. becomes infinite as soon as the circuit is opened W. 
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2, Energy dissipation occurs through dry friction (the resistance of the Leaf spring is 
negligible>. 

3, The impulse is proportional to the square of the current strength in the electrical 
circuit [I]. 

The equations of motion of the dynamic system are 

mcp”JrQ= -+$-ML&, f;y6’“+Ry,=E 

when the ekxzrical circuit is closed. and * 
Wf*ihp=--Q&9 yr==Q 

when tb circuit is open 
Here Q, is the ordinate of the osciflator measured from the position of static equi- 

librium, m the mass of the oscillator, k the coefficient of elasticity of the oscillator 
spring, Q the coefficient of dry friction, Mgxa. the impulse , ?& the current strength, f; 
the se~f~~du~nce of she coil, B the circuit resistance, and E ihe electromotive fQrCe, 

The electrical circuit closes for 9 = -_cp,, v.> 0 and opens for:9 = -_IPS, cp’ > 0 
(VI > + > 0). Let us irstxoduce the following variables and parameters t’ is the initial 
time) : 

Transition from (1.4) to (1.3) occurs when z = --2b - d, z’c’> 0, and transition from 
(1.3) to(X.4) when z = ---cl, I > 0. 

The system is characterized by the four essential parameters a, b , d, F, which, by the 
physical mearbhrg of the constituent parameters, can only be nonnegative, Let us set 
z = ~arrd assume that 5, y, i: are the Gartesian coordinates of the phase space of the 
dynamic system under consideration. 

a, ~8~~~ing the probl8m ti3 paint tI~~~f~~m$ti~n8* The! phasespace 
of the dynamic system under discussion consists of a part of a plane and the attached 
tbree-dimensional domain, Moving in the plane y = 0, the representing point at some 
inatant reaches the half-line Pi (x = -2b - d, y = 0, I > 0), with tbe coordinate 
X= TV. It then passes from this point into the three-dimensfonal domain of the phase 
space between the planes x = -2b - d and x = -d and moves aiong the trajectories 
of system (I. 3). 

The trajectories of system (1.3) lie on the bent tubes whose intersections by planes 
y =ccnst are circles of radius c,, The equations of the tubes are 

E 
ZG--?Jyf Za (i - yp x---i-i-r-i- *j..& (i--YF a+ z_2aft--j+ it-4aZ 8 -rj=z2- 1 E 1 +a2 I S&z (2_$) 

If tbe representing point moving along one of the trajectories of the upper half-space 
in one of surfaces (2.1) reaches the half~p~ane z = -d, z ) 0 at some point z = -d, 
ar, 0, a= u (this fs the or&y case we shall consider), then the motion of the representing 
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point can be additionally defined in accordance with the adopted idealization I: on arriv- 
ing at the plane x = -cl the representing point instantly jumps along the line parallel 
to the y-axis to the half-line Ia (5 =-d, y = 0; z > 0.) The representing point then 
continues to move from the point with the coordinate z = u in the plane .y = 0 in 
accordance with Eqs. (1.4). If z = v > u 0, then the representing point arrives at the 
half-line I’l ; if z = u < uo, it arrives at the rest segment -r < z < r, P = 0, z = 0 
along trajectories in the plane I= 0 (here U, is the coordinate of the point on the 

straight line I+$ through which the trajectory tangent to the half-line r1 passes). 
Investigation of the decomposition of the phase space into trajectories reduces to the 

analysis of the point malformation of the half-line l% into itself. 
The transformation S, maps the point of the half-line I’, with the coordinate x = it 

along the trajectories of the upper half-space into a point with the coordinate z = ~,in 
the plane 3 = -d. The transformation Sz effects an instantaneous jump along the plane 
z = -d onto I'2. For example, introducing the transit time z as the parameter, we ob- 
tain the following expressions for the transformation SISZ : 

u=& [2b cos z + (r - d - 1) (1 - cos T) + 2F (a, z) - F (2a, Q] 

v = & [Zb - (P - d - 1) (I- cos T) - 20 (a, z)‘+ CD (Za, a)] (2.2) 

F (a, r) = __._! _ (eear - cos z + a sin z), 
1 + a”- 

cD (@, z1 = 1 ‘- e-*= (cos r + a sin t) 
1+ a% 

The plane 
r=2b+d for b<bo~i-~*-Fe~R + i+a-m” 

i+ a2 2 (2 + 4a2) 
and the surface 

r--l+~+d_ ~-i-e+ + l+e-mv 
1 _I- a2 2(1 +4a9 

for b > b. (2.3) 

(the two of which will henceforth be referred to as the surface {al}) isolate the domain 
in question in the parameter space a, b, d, r for whose points the entire half-line I’r is 

mapped onto the plane a= -d along the trajectories of the upper half-space (the para- 
meter ‘c in expression (2.2) varies in the range 0 < z f z. d x) 

The transformation S, maps the point of the half-line I’z with the coordinate z = 9 
into the point of the half-line r1 with the coordinate a = u along the trajectory of sys- 

tem (1.4). The quantities uI and tl are related by the equation 

isa + (r - d)2]‘/~ - fug + (r - 2b - d)2]‘h = 4r (2.4 

The transformation S, is effected in our domain for 

y>, v. G ZI(2r + b) (r + b + d)]‘/a 

The transformation T = S&S, in the indicated domain of the parameter space maps 
the half-line I’si into itself (maps u, into u). As in [4] we can show that there exist para- 
meter values for which the trajectories effecting the transformation T lie on a Mijbius 
strip. 

Equations (2.2) and (2.4) can be written as 

5 = cp f% u= 9 t@ (2.51 

In the neighborhood of the fixed point defined by the condition cp (+f = 9 (flf s ~9 

the transformation T and Tz can be expressed in series form, 
(T) z’ = w (z) = Xz + a2z2 + Q~Z~ + . . . . (h G UJ (2.6) 
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tT2) I“ = w (z’) = l.*z -+ bzz” f baza + . . . (2.7) 

(n = 1, 2, . ..) 
+ 

Here b, are certain polynomials of the coefficients of series (2.6). 

In passing through the surface {as} (defined by the condition Ir + 1 = 0) in the para- 
meter space, the stability of the fixed point of the transformation T changes in accord- 
ance with the sign of the quantiv go # 0 (go is the coefficient bscomputed for 1+1=0), 

go = - 2 (a3 + az2j (2.3) 

It either sprouts or is impinged on by the two stable or unstable fixed points of the trans- 
formation ‘P (e.g. see [5]). 

3. Chrrocterictic: of the photo apace. The parameter #pace. 
Let us consider the parameter space a, b, r (d= const > 0). The surfaces {a,}, {cz}, 
{us} and {IX,} decompose the parameter space into domains in each of which the system 
described by Eqs. (1.3) and (1.4) has the same qualitative structure of decomposition of 
the phase space into trajectories. 

The surface {u2} is given by the equations 

[L? + (r - d)2]‘/f - [u2 + (r - 2b -d)2]‘ls = 4r 

u {4r + [ Z$ + (r - 26 - d)+i 
u - 2a [‘D (u, t) - @ (?a, T)] $ - 

[U2+(r-2b-d)+ ’ =’ (3.1) 

where u and v are given by (2.2). 
The surface {a,} (defined by the condition of passage of the two-turn limit cycle 

through the point z = v. of the half-line Iz) is given by the equation 

[vz (~1) + (r - d)2]1’z- [u2(te) + (r -d - 2b)2]‘/P=4r (3.2) 

Here 
1 

U (‘2) = sin r2 - [26 cos tz -+- (r - d - 1) (1 - cos z2) + 2F (n, te) - F (2a, rz)] 

[2b - (r - d - 1) (1 -cosz~)-2~(a, %+@@a, t1)l 

and rr and zz are roots of the equations 

2b cos rl + (r - d - 1) (1 - ~0s ~1) $ 2F (a, 71) - F (2a, zl) = 0 

2b - (r - d - 1) (1 - cos tz) - 2@ (a, ~22) f @ (2a, ~2) = v. sin zz 

respectively. 
Computations show that the surface {US} contains a curve at whose points the quantity 

go vanishes. The behavior of the system near 
this curve depends essentially on the sign of the 
quantity ho (ho is the coefficient &in (2.7) 
computed for the conditions h -t i = 0, ro.= 6) 
Depending on the signs of the quantities g, and 
II,, , the neighborhood of the simple fixed point 
of the transformation T can contain either one 
or two pairs of fixed points of the transformation 
Ta(stable or unstable two-turn limit cycles in 
the phase space). There exists a bifurcation 

Fig. 2 surface (we denote it by {a,}) on which the 



two pairs of fixed points of the transformation 3[” merge and vanish [6f. The surface (a&) 

emerges from the curve defined by the conditions h + 1 = 0 and g, = 0. 
We have not written out an analytic expression for the surface (aJ , but the latter can 

be approximated on the basis of the condition of merging of the two two-turn limit 

cycles. We constructed this surface on a BESM-3M computer for the parameter values 

(I. = 2, d = 0.2 , Figure 2 is a qualitative diagram of the disposition of the intersections 

of the bifurcation surfaces {as], (a,), {ad} bounding shaded domain (4). The following 
table gives the coordinates of the points of intersection of the indicated bifurcation sur- 
faces : if a c 

b 6.l6U4.5 O.f6522 0 16572 
r ~.~5~69~ (~.~5%%~~~ ~:059~~~ 

The widths Ar of this domain (4) for several values of b turned out to be 

I). 4p45 0 * 3 54535 0.264% 0.46505 
:;z 

0.16525 0.16545 0.16565 
9.?.10-8 33.5.10-” 73.7.10-8 64.%.10-” 27.2-$0~* 6.8.10-8 

Narrow domain (4) adjacent to the point B [the point of intersection of the bifurcation 

surfaces {us} and {cls)) vanishes only if b, = 0 (i = 2, 3, ..,I in expression (2.7) for the 
parameter values corresponding to the point B . Depending on the sign of the quantity 

h,, domain (4) lies I[63 either “below” or “above” the point B. The parameter values 
a = 2, d = 0.2 are associated with the bifurcation corresponding to the case ho < 0. 

Domain (4) is associated with a phase space with three limit cycles: a stable one-turn 

cycle, a stable two-turn cycle, and an unstable two-turn cycle, ail of which lie on a 
~bius strip. Figure 3 shows the projec~ons of the cycles onto the plane XX, The twist 
in the MGbius strip occurs in the impulse zone 

-2b - d\(X<--- d, 0 \< y < 1, z > 0. 

The broken curve represents the unstable two-turn limit cycle. 
The domain situated below the surface {ur} 

and above the surfaces {us} and {as} will be 

called domain (1) ; the domain lying above the 
surface {ae) and below the surface {a,} will be 

called domain (2) ; the domain below the sur- 
face {us) and above the surface {us) will be 

called domain (3) ; the domain below the sur- 

faces (a2), pS) and (q) will be called 

domain ( 5). 
Domain (5) is associated with a phase space 

con~~ing a stable one-turn limit cycle. 
The stability of the one-turn limit cycle 

changes in the phase space on passage into 

domain (2) through the surface (a2) in the 
parameter space ; it sprouts the two-turn stable 

Fig. 3 
limit cycle in passing from domain (5) into 
domain (2) and is impinged on by the unstable 

two-turn limit cycle in passing from domain (4) into domain (2). For domain (‘2) the 
phase space contains a stable two-turn and an unstable one-turn limit cycle (Fig. 4). 

The two-turn stable limit cycle vanishes in the phase space on passing from domain 
$4) to domain (3) through the surface (a%) in the parameter space, in passing from domain 
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(5) to domain (3) in the phase space this boundary sprouts the two-turn unstable limit 

cycle. For domain (3) the phase space contains an unstable two-cycle and a stable one- 

turn limit cycle (Fig. 5). 

Fig. 4 Fig. 5 

The two-turn stable limit cycle vanishes (impinges on the boundary of the domain of 
attraction of the rest segment) on passing from domain (2) into domain (1) on the surface 
{ua} in the parameter space. The unstable two-turn limit cycle merges with the one-turn 
stable limit cycle on passage from domain (3) into domain (1) on the surface [aa}. Near 
the surfaces {aa) and { ua) in domain (1) the phase space contains an unstable limit cycle 
which vanishes with further increases in the parameter r. The unstable one-turn limit 
cycle lies on a Miibius strip and therefore does not decompose the phase space into parts 
on which the representing points move toward various attracting elements. Domain (1) 
is associated with a phase space in which the entire trajectory coils in towards the rest 

segment. 
Here are some values of r corresponding to the intersections of the surfaces {a%} and 

(u3) with the planes a = 2 and d = 0.2 calculated from Eqs. (3.1) and (3.2), respec- 

tively, for several values of b 

b=O.05 0.10 0.20 0.30 0.40 0.60 
r=0.0203 0.0393 0.0669 0.0847 0.0972 0.?138 {%z} 
r=O.OZii 0.0402 0.0668 0.0643 O-0967 0.1134 (es1 

The author is grateful to N, N, Bautin for his many remarks and suggestions. 
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It is known that the complex natural frequencies p,,= <m, of B vibrating system take 
the form pn’= --a, -l- &Q~‘_ Q> 0 upon the introduction of damping. It can be shown 

that under some Condition the imaginary part of the wmplex frequency hance varies thus, 

c+~*<% for ON>& oN’),oN for W,<O 

I %I =XUaXn/OnI (1) 

The proof of the inequalities (1) follows from this lemma. 
Lemma, Let A > 0, B > 0, H > 0. be self-adjoint Ed X it matriCes, where the 

Condition 
(AX, x)” < 4 (A% 4 (Bffs, 4 

(weak damping) is satisfied. Let p,, = iw, be the roots of the equation 

det (paA"+ B I= 0 (2) 

and pm’ the roots of the equation 
$A _O pR + B) = 0 f’:) 

Let lpN I= ma+ /pa]. Then PN’= --UN + to>, where a~’ > 0 ) and the inequali- 
ties (1) are satisfied, Here pn’ denotes the root of (3) for which lo#‘l = max, 1 ON’]* 

Proof. Let zi’ be the eigenvector Corresponding to the eigennumber &,’ , that is 

CPN’~A $ px’N + E) xN’ = 0 (4) 
Then 

Since R 2 0, A > 6, then aH’ 2 0. Furthermore 

@N = 

From the minimax principle it follows that 

(Bx, 2) lBxN’, “N’) 
ON *=supx (Ax, 3 >i :A+‘> XN’) (7) 


